OpenMP



Motivation

Every application uses loops

Performance can be improved on multi core systems
Complex parallel programming models
Crossplatform multithreading support

Huge amounts of code must be change

S

- New bugs




What is OpenMP?

Compiler directives for C/C++ and Fortran
#pragma omp parallel for

Can be enable with -fopenmp , /openmp

Available for windows and unix systems

Loops can be parallelized automatically

In general existing serial code doesn't need to be
modified

If the compliler doesn't support OpenMP directives are
treated as comments



OpenMP

e The main thread forks several slave threads that
execute a part of the workload in parallel

 The number of threads is determined by the system

Parallel Task | Parallel Task Il Parallel Task I

-

Master Thread

Parallel Task | Parallfl Task Il Parallel Task Il
Master Threag T, -
. —

Source: http://en.wikipedia.org/wiki/File:Fork_join.svg



Example: Matrixmultiplication(1)

Sequential version
for (int 1 = 0; 1 < MATRIX A HEIGHT: i++)

{
for (int j = 0; j < MATRIX B WIDTH; j++)
{
Clz][7] = 0.7,
for (int k = 0; k < MATRIX A WIDTH: k++ {
, Clil[j] += Al1]llk] * Blk]l[]]:
I



Example: Matrixmultiplication(2)

OpenMP version:

gpragma omp parallel for schedule(dynamic)
for (int 1 = 0; 1 < MATRIX A HEIGHT: 1++)

1

for (int j = 0; j < MATRIX B WIDTH: j++)

1
Clzl[3] = O.F;
for (int k = 0; k < MATRIX_ A WIDTH; k++) K
. Cl1][3] += Al1l[k] * BIkII]]:

}

Always the outer loop
should be parallelized
with the OpenMP
directive



OpenMP clauses

Scheduling:

schedule(dynamic)

schedule(static,chunk)

Synchronisation:

#pragma omp barrier

#pragma omp critical
#pragma omp ordered

#pragma omp master

Variable scope:

shared(var)

private(var)

Reduction:

reduction(operator:var)




Examples

Dotproduct

int n = 100;
int chunk = 10:
int result = 0.0;

#pragma omp parallel for
schedule(static, chunk)
reduction(+: result) Y

for (int1=0; 1 <n; 1+

result += (al1] * bl1]);

« more advanced functions are
available through omp.h

o functioncalls must be
threadsave

Critical section

#include <omp.h>

float x = 0.0F;
float A[1024];
float B[1024];

omp_set num_threads(4);

#pragma omp parallel shared(x)

int t ID =
omp_get thread num();

float res = foo(A,t ID);

#pragma omp critical

X = X + result;

#pragma omp barrier

bar(x,B):



Summary

Very simple to use

Datadecomposition and distribution handled automatically by
directives

Unified code for parallel and serial application

Lack of fine grained control mechanisms
Race conditions

High chance writing false sharing code



Fragen?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

