
9/17/2013

The C++ Keyword

static
Stefan Kislinskiy



Page 29/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

What is “static”?

• Storage Class

• Lifetime, linkage, and treatment of objects and variables

• Only one storage class per object

• extern, static, auto, register

• Variables, functions, class methods and members can be declared static

• Static duration: variable is allocated at program start and deallocated at program end

• Internal linkage: symbol isn‘t visible outside of file in which it is declared



Page 39/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

Uses of “static” (1 / 4)

• A static class method is shared by all instances of the class

• Can be called without instantiation of class

• Cannot access instance members (directly)

• Does not have implicit this pointer as hidden first parameter



Page 49/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

Uses of “static” (2 / 4)

• A single copy of a static class member is shared by all class instances

• Must be defined at file scope

• Exception: Constant static integral members can have an initializer



Page 59/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

Uses of “static” (3 / 4)

• A static variable declared in a function retains its state between calls

void DeeplyOffendedFunction()
{
static bool alreadyCalled = false; // Initialized only once!

if (!alreadyCalled)
{
alreadyCalled = true;
std::cout << “We don’t talk anymore!” << std::endl;

}
}



Page 69/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

Uses of “static” (4 / 4) – Your favorite! :-)

• A static variable or function at file scope has internal linkage

• Variables have also static duration and are default-initialized to 0

• Wait… what? That’s all!? – Yes it is, but consider the following:

• Use static functions in your class’ .cpp file whenever you can

• Greatly increases readability of your code (even for yourself!)

• Say goodbye to your too long class method implementations

• Reduce code redundancy

• Best for “semi class independent” code snippets

• Better encapsulation than pure OO (one of the strengths of C++)

• Keep your class declarations clean (less private stuff in .h file)

• Avoid name clashes - don’t forget “static”



Page 79/17/2013 | Stefan Kislinskiy Division of Medical and Biological Informatics (E130)

Simplify your programmer’s life!

• In your interest, use it from now on… I promise you’ll love it!


