
01/06/2011

Initialization

Hello world



Page 26/1/2011 |

Caspar Jonas Goch
MBI

The birth of a variable

• Declaration
• Known to compiler: name & type
• Missing details

• Definition
• Supply details missing above
• Reserve memory, provide code body

• Initialization
• Assign first value – usually via Constructor



Page 36/1/2011 |

Caspar Jonas Goch
MBI

But in C++ everything is initialized to 0

• NO
• Initialization to zero not guaranteed

• Rule of thumb: If it is a C thing it is not initialized
• Undeterministic behaviour

=> Make sure constructors initialize everything



Page 46/1/2011 |

Caspar Jonas Goch
MBI

First try

Class Birthdate{ … };
Class Person{
Public:

Person(const string& name, const Birthdate& day);
Private:
string theName;
Birthdate theDay;

};

Person::Person(const string& name, const Birthdate& day)
{
theName = name;
theDay = day;
}

Are there any problems left?



Page 56/1/2011 |

Caspar Jonas Goch
MBI

First try – What did we (not) achieve?

• Guaranteed Initialization – no undetermined values
• BUT what we did were assignments not initializations

• C++: Initialization takes place before the constructor body
• Default Constructor was called and its work wasted

=> Use initialization list



Page 66/1/2011 |

Caspar Jonas Goch
MBI

Second try

Class Birthdate{ … };
Class Person{
Public:

Person(const string& name, const Birthdate& day);
Private:
string theName;
Birthdate theDay;

};

Person::Person(const string& name, const Birthdate& day)
: theName(name),
theDay(day)
{
}

=> More efficient



Page 76/1/2011 |

Caspar Jonas Goch
MBI

More comments

• If only the default constructor is called it is done 
automatically, but:

• Const and references can not be assigned and have to 
be initialized

• Order of initialization is defined by:
• Base class before derived class
• By declaration order

• It will compile (most of the time) if initialized 
differently but don’t



Page 86/1/2011 |

Caspar Jonas Goch
MBI

Beware of Static

• The relative order of initialization of non-local static objects in 
different translation units is undefined

• There is no way you can make sure a non-local static object 
in another file is initialiazed before you access it in your own

• Can be solved by making the objects local
Object& AnObject()
{
Static Object thingy;
return thingy;
}



Page 96/1/2011 |

Caspar Jonas Goch
MBI

References and The End

• Meyers, Scott. Effective C++: 55 Specific Ways to Improve 
Your Programs and Designs. ISBN 0-321-33487-6

Questions?

Good luck hunting…


	Initialization
	The birth of a variable
	But in C++ everything is initialized to 0
	First try
	First try – What did we (not) achieve?
	Second try
	More comments
	Beware of Static
	References and The End

