Rivest, Shamir, Adleman

GERMAN
CANCER RESEARCH CENTER
in the helmholtz association

- Designers: Ron Rivest, Adi Shamir, Leonard Adleman
- First published: 1977
- Key sizes: 1024 to 4096 bit typical
- Rounds: 1
- Utilization: asymmetric cryptography, digital signature, https
- RSA is based on the practical difficulty of factoring the product of two large prime numbers
- $\mathrm{m}^{\wedge} \mathrm{e}$ mod $\mathrm{n}=\mathrm{c} \rightarrow$ encryption one-way function, m being the message as number
- ?^e $\bmod \mathrm{n}=\mathrm{c} \leftarrow$ hard to calculate m again
- $\mathrm{c}^{\wedge} \mathrm{d} \bmod \mathrm{n}=\mathrm{m} \leftarrow$ decryption

1. Choose two distinct prime numbers p and q.

- $\mathrm{p}!=\mathrm{q}$

2. Compute $\mathrm{N}=\mathrm{p}^{*} \mathrm{q}$.
3. Compute $\varphi(\mathrm{N})=\varphi(\mathrm{p})^{*} \varphi(\mathrm{q})=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$

- Where $\varphi()$ is Euler's totient function

4. Choose an integer e such that $1<e<\varphi(N)$ and e is coprime to $\varphi(\mathrm{N})$

- e is released as the public key exponent

5. Determine (inverse of $d) \equiv e(\bmod \varphi(N))$ as the multiplicative inverse of e (modulo $\varphi(\mathrm{N})$)

- This is more clearly stated as: $\mathrm{d}^{*} \mathrm{e} \equiv 1(\bmod \varphi(\mathrm{~N}))$
- $\quad \mathrm{d}$ is kept as the private key exponent

Encryption and decryption

- Encryption:
- Mr. Bob send us his public key (N, e)
- Encrypt the message m to miphertext c
- c $\equiv \mathrm{m}^{\wedge} \mathrm{e}(\bmod \mathrm{N})$
- Can be done quickly using the method of exponentiation by squaring
- Send the ciphertext to Mr. Bob
- Decryption:
- Mr. Bob can decrypt the ciphertext c with his private key (N, d)
- $m \equiv c^{\wedge} d(\bmod N)$

Example

1. $\mathrm{p}=61$ and $\mathrm{q}=53$
2. $N=61^{*} 53=3233$
3. $\varphi(3233)=(61-1)^{*}(53-1)=3120$
4. Choose any number $1<\mathrm{e}<3120$ that is coprime to 3120

- $e=17$

5. Compute d, the modular multiplicative inverse of e (mod $\varphi(\mathrm{N})$)

- $d=2753$
- The public key is ($\mathrm{N}=3233, \mathrm{e}=17$)
- The private key is $(\mathrm{N}=3233, \mathrm{~d}=2753)$
- $\mathrm{c}=65^{\wedge} 17 \bmod 3233=2790$
- $\mathrm{m}=2790^{\wedge} 2753 \bmod 3233=65$

