
3/5/2015

Introduction to the new

IO System

3/5/2015 | Author

Today‘s session is gonna take a little longer

1. Features

2. The IO Architecture

3. Quick HowTo

3/5/2015 |

Features

1. Common Interface for all Reader/Writer

2. Reader/Writer implementation in one file….

3. …and one method

4. User-defineable options while reading/writing files

5. Automatic handling of file location and streaming

6. Core needs no fiddeling

7. Reader/Writer can be superceded externally

8. Confidence level

9. Usage of MIME-Types

10. Fetches coffee if asked nicely

3/5/2015 |

It’s like Christmas all over again!

3/5/2015 |

The IO Architecture

3/5/2015 |

The IO Architecture

3/5/2015 |

The IO Architecture

3/5/2015 |

IFileIO

General concepts shared between Reader and Writer

1) The Confidence Level

2) Options

3) Progress Callbacks (Future Work)

3/5/2015 |

IFileIO:Confidence Level

Concept to rank Reader and Writer

 enum ConfidenceLevel

 {

 Unsupported = 0,

 PartiallySupported = 8,

 Supported = 16

 };

• Your reader should return one of these values when

presented with a file

• Higher confidence is preferred by the system

3/5/2015 |

IFileIO:Options

Concept to control Reader/Writer behaviour

 typedef std::map<std::string, us::Any> Options;

 virtual Options GetOptions();

 virtual void SetOptions(const Options& options);

 virtual us::Any GetOption(const std::string& name);

 virtual void SetOptions(const Options& options);

• Reader/Writer should define their default options

• Example Implementation: RawImageFileReaderService

3/5/2015 |

IFileIO:Options

Options are

 Automagically

Converted into a form when

opening a file via a GUI!

3/5/2015 |

IFileReader & IFileWriter

General concepts specific to Reader and Writer

1) Defining locations and abstracting from location to streams

2) Read / Write methods

3/5/2015 |

Locations and Streams

• Reader/Writer should be indifferent towards Stream/FilePath

• Interfaces require Reader/Writer to handle both!

3/5/2015 |

Implement own IO: Use Abstract Classes

mitk::MyFileReader mitk::MyFileWriter

mitk::MyFileReaderAndWriter

3/5/2015 |

Benefits: Deriving from Abstract Classes

• Handels Stream / Filepath abstraction

• Registration in Reader/Writer registry system

• Sensible default implementations

• Avoid code duplication

• Fast and easy IO implementation

?

3/5/2015 |

Reader/Writer Registry

• Abstract Classes implemented as Microservice

• Reader/Writer globally available

• Available from GUI

• Easy-Peasy file reading from code via IOUtil

std::vector<mitk::BaseData::Pointer> result;

result = IOUtil::Load(“/Path/To/My/Unicorn”);

3/5/2015 |

Reader/Writer Registry

• Supercession of Readers

• Use Confidence and Priority to select best reader

• Reader/Writer globally available

• Available from GUI

• Easy-Peasy file reading from code via IOUtil

std::vector<mitk::BaseData::Pointer> result;

result = IOUtil::Load(“/Path/To/My/Unicorn”);

3/5/2015 |

Further Reading

• For more detailed info, please consult the concept page!

Thank you for

your attention!

 Further

 information

 on www.dkfz.de

