8/18/2010

Exception-safe Code

Paul Mercea

GERMAN
z CANCER RESEARCH CENTER
. IN THE HELMHOLTZ ASSOCIATION

Paul Mercea

MBI

8/18/2010| Page 2 Exanuﬂefuncﬂon

- example function in class for representing GUI menus with
background images used in threaded environment

void PrettyMenu: :changeBackground (std: :istream& imgSrc)

{

lock (&mutex) ; // acquire mutex

delete bgImage; // get rid of old background
++imageChanges; // update image change count
bgImage = new Image (imgSrc); // install new background
unlock (&mutex) ; // release mutex

class PrettyMenu({
public:

void changeBackground(std::istream& imgSrc) ;

private:
Mutex mutex;
Image* bgImage;
int imageChanges;

};

Paul Mercea

MBI

8/18/2010| Page 3 Example function - ,,as bad as it gets“

void PrettyMenu: :changeBackground (std: :istream& imgSrc)

{

lock (&mutex) ; // acquire mutex
delete bgImage; // get rid of old background
++imageChanges; // update image change count

bgImage = new Image (imgSrc); // install new background
unlock (&mutex) ; // release mutex

Paul Mercea
MBI

8/18/2010| Page 4 Example function - ,,as bad as it gets“

void PrettyMenu: :changeBackground (std: :istream& imgSrc)

{

leak of resources

e unlock ()

lock (&mutex) ;
delete bgImage;
++imageChanges;

corrupted data
structures

// acquire mutex
// get rid of old background
// update image change count

bgImage = new Image (imgSrc); // install new background

unlock (&mutex) ;

// release mutex

never gets executed; mutex is held forever

- bgImage points to a deleted object
- imageChanges has been incremented

Paul Mercea
MBI

8118/2010| Page 5 Exception-save function guarantees

- basic guarantee

- if an exception is thrown, everything in the program remains in a valid
state

- exact state of the program may not be predictable

- strong guarantee
- if an exception is thrown, the state of the program is unchanged

- such functions are atomic, either they succeed completely or the program
state is as if they'd never been called

- nothrow guarantee
- always doing what promised to do
- all operations on built-in types (ints, pointers, etc.) are nothrow

Paul Mercea

MBI

8/18/2010| Page 6 Improving changeBackground()

- Using resource management classes

void PrettyMenu: :changeBackground (std: :istream& imgSrc)

{
‘ Lock ml (&mutex) ; // acquire mutex
// and asure its later release

delete bgImage; // get rid of old background
++imageChanges; // update image change count
bgImage = new Image (imgSrc); // install new background
unteock{&mutex)—

} class Lock {

public:
explicit Lock (Mutex * pm) :mutexPtr (pm)
{lock (mutexPtr) ;}

~Lock () {unlock (mutexPtr) ;}

private
Mutex* mutexPtr;

};

Paul Mercea
MBI

8/18/2010| Page 7

Improving changeBackground()

- Using smart pointer and reorder statements

void PrettyMenu: :changeBackground (std: :istream& imgSrc)

{
Lock ml (&mutex) ; // acquire mutex
// and asure 1its later release

‘ bgImage.reset (new Image (imgSrc)); // replace bglmage'‘s
// internal pointer
// with the result of
// the ,new Image"“
// expression

‘ ++imageChanges; // update image change count

} class PrettyMenu
{

‘ std::trl::shared ptr<Image> bgImage;

};

Paul Mercea
MBI

8/18/2010| Page 8

After ...

- using resource management classes
- using smart pointer
- and reordering statements

... changeBackground() can almost offer the strong
exception safety guarantee.

Paul Mercea
MBI

8/18/2010| Page 9

Why just almost ?

- the problem is the parameter imgSrc

- if the Image constructor throws an exception it's possible
that the read marker for the imput stream has been moved,
such movement would be a change in state

- Solution - ,,copy and swap*
- make a copy of the object to be modified
- make all needed changes to the copy

- after successfully completed changes, swap the modified
object with the original in a non-throwing operation

Paul Mercea

MBI

8/18/2010| Page 10 Thlngs to Remember

- Exception-safe functions leak no resources and allow no
data structures to become corrupted, even when exceptions
are thrown. Such functions offer the basic, strong, or
nothrow guarantees.

- The strong guarantee can often be implemented via copy-
and-swap, but the strong guarantee is not practical for all
functions.

- A function can usually offer a guarantee no stronger than
the weakest guarantee of the functions it calls.

Paul Mercea
MBI

8/18/2010| Page 11 Further information

- Meyers, Scott. Effective C++: 55 Specific Ways to Improve
Your Programs and Designs

