
6/3/2015

SOLID programming

Sebastian J. Wirkert



Willkommen im DKFZ!



Seite 36/3/2015 |

Autor

Abteilung

SOLID

• Acronym for five object oriented design principles

• Invented by Robert C. Martin (Uncle Bob)

• Wikipedia:

• The principles, when applied together, intend to make it 

more likely that a programmer will create a system that is 

easy to maintain and extend over time. The principles of 

SOLID are guidelines that can be applied while working on 

software to remove code smells by causing the programmer 

to refactor the software's source code until it is both legible 

and extensible. It is part of an overall strategy of agile and 

adaptive programming.



Seite 46/3/2015 |

Autor

Abteilung

• Single responsibility principle

• a class should have only a single responsibility 

• Responsibility: reason for change

• Bad example: a module that compiles and prints a report.

S



Seite 56/3/2015 |

Autor

Abteilung

• Open/Close principle

• software entities (classes, modules, functions, etc.) should 

be open for extension, but closed for modification

• Good example: interface classes (shall not be modified, but 

can be derived and extended).

O



Seite 66/3/2015 |

Autor

Abteilung

• Liskov substiution principle

• Let Φ(x) be a property provable about objects x of type T. 

Then Φ(y) should be true for objects y of type S where S is a 

subtype of T.

• Bad Example: Circle-ellipse problem

L

Ellipse

Circle

void stretchX(double factor)



Seite 76/3/2015 |

Autor

Abteilung

• Interface-segregation principle

• The interface-segregation principle (ISP) states that no client 

should be forced to depend on methods it does not use. ISP 

splits interfaces which are very large into smaller and more 

specific ones so that clients will only have to know about the 

methods that are of interest to them.

• ISP is intended to keep a system decoupled and thus easier 

to refactor, change, and redeploy

I



Seite 86/3/2015 |

Autor

Abteilung

• Dependency-Inversion-Principle

• A. High-level modules should not depend on low level 

modules. Both should depend on abstractions.

• B. Abstractions should not depend upon details. Details 

should depend upon abstractions.

D



Seite 96/3/2015 |

Autor

Abteilung

D

Schalter Lampe
Schalter

LampeDIP

SchalterKlient



Auf Wiedersehen

im DKFZ!


