
4/18/2012 

Avoid long functions. 
Avoid deep nesting. 

Stefan Kislinskiy 
Dept. of Medical and Biological Informatics (E130) 

long python 

nested alligator 

q.e.d. 



Page 2 4/18/2012 | A Bug Squashing Story 

Super easy tiny nano party bug 

bug squashing bros 



Page 3 4/18/2012 | A Bug Squashing Story 

million LOC’s in functions, 
trillion LOCs in file… 

… stuffed with über-loops 
and mo-mo-mo-monster 
conditional branches 



Page 4 4/18/2012 | A Bug Squashing Story 

a few hours later… 



Page 5 4/18/2012 | A Bug Squashing Story 

… later that day … 



Page 6 4/18/2012 | A Bug Squashing Story 

Finally found truly super easy tiny nano ultra well hidden party bug… 

… but somehow there is no satisfaction in the air. – THE END - 



Page 7 4/18/2012 | We can do better… 

• Avoid long functions 
• Every function should be a coherent unit of work 
• One function – one responsibility 

 
• Avoid deep nesting 

• Rhetorical question: Have you ever found a closing brace 
in someone’s code and wondered which of the many 
fors, whiles, or ifs it matched? 

 



Page 8 4/18/2012 | We really can do better… 

• Prefer cohesion: Give one function one responsibility. No, really! 
 

• Don’t repeat yourself: Prefer named functions over C&P’ed code 
snippets. 
 

• Prefer algorithms: Flatter than loops, and your/my code usually 
sucks compared to them. :-) 



Page 9 4/18/2012 | Useful tips 

• Prefer writing nonmember nonfriend functions 
• Improve encapsulation 
• Break apart monolithic classes 
• Reduce dependencies / coupling 

 

• Functions have pre- and post-conditions – respect them! 
• Fail gracefully. If your function works only for 3D-Images, make sure 

input IS a 3D-image instead of crashing hard. 



Page 10 4/18/2012 | Refactoring… is it worth it? 

• How many hours did you spend searching for bugs and how 
many hours did you spend to actually squash those nasty 
bitc… I mean bugs? 
 

• Would that bug be even present when there would be 
shorter and flatter functions with single responsibilities 
instead of that monolithic “piece of … code ”? 
 



Page 11 4/18/2012 | How we can improve 

We should endorse code reading and 
(preemptive) refactoring during bug 

squashing parties. 



Page 12 4/18/2012 | Thank you! :) 


	Avoid long functions.�Avoid deep nesting.
	A Bug Squashing Story
	A Bug Squashing Story
	A Bug Squashing Story
	A Bug Squashing Story
	A Bug Squashing Story
	We can do better…
	We really can do better…
	Useful tips
	Refactoring… is it worth it?
	How we can improve
	Thank you! :)

