
Observer & Whiteboard Pattern

10/19/2011

Jasmin Metzger

Page 2 10/19/2011 |

Author

Department

Design Pattern

• Guidelines for implementing software

• Approved designs to solve architectural problems

• Different types:

• Creational

• Structural

• Behavioral

• Concurrency

• Deal with initializing and configuring

classes and objects

• Deal with decoupling interface and

implementation of classes and objects

• Composition of classes or objects

• Deal with dynamic interactions among

societies of classes and objects

• How they distribute responsibility

• Deal with multi-threaded programming

paradigm

Page 3 10/19/2011 |

Author

Department

The Observer Pattern

• A Behavioral Pattern

• Also known as ‚Publish-Subscribe‘, Dependents

• Define one-to-many dependency between objects  one object changes

state, all its dependents notifier and updated automatically

• Usage:

• Between GUI-Modules

• Key-Value-Pair

• MVC

a = 50 %

b = 30 %

c = 20%

Page 4 10/19/2011 |

Author

Department

Observer

Subject: Knows its observers. Provides interface for attaching and detaching Observer objects.

Observer: Defines updating interface for objects that should be notiefied of changes in a subject

ConcreteSubject: Stores state of interest to ConcreteObserver objects and sends notification, when its

state changes.

ConcreteObserver: Implements the updating interface keeping the state consistent with the subject‘s

<<interface>>

Observer

+Update()

<<abstract>>

Subject

+Attach(Observer)

+Detach(Observer)

+Notify()

ConcreteObserverA

+update()

ConcreteObserverB

+update()

ConcreteSubject

+GetState()

+SetState()

<<call>>

observerList

0..*

Page 5 10/19/2011 |

Author

Department

Pros and Cons

+ Abstract coupling between Subject and Observer

+ Support for broadcast communication

+ Reusability

+ Data consistency

+ Flexibility and modularity

- Unexpected updates, deadlocks

- Life cycle issues

- Extra Vector in subject for observer

Page 6 10/19/2011 |

Author

Department

The Whiteboard Pattern

• Uses framework‘s service registry

+ Life Cycle Management

+ Implementation

+ Debugging

+ Properties

Event

Listener

Event source
(Bundle)

Service
register get

listen

Registry

Page 7 10/19/2011 |

Author

Department

Sources

• Design Patterns. Elements of Reusable Object-Oriented Software, Erich

Gamma, Richard Helm, Ralph Johnson, John Vlissides

• http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29

• http://www.philipphauer.de/study/se/design-pattern.php

• http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://www.philipphauer.de/study/se/design-pattern.php
http://www.philipphauer.de/study/se/design-pattern.php
http://www.philipphauer.de/study/se/design-pattern.php
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

