
Temporary Objects

Diana

Diana

Temporary Objects

24.04.2013
Temporary Objects

„Unnecessary and/or temporary objects are
frequent culprits that can throw all your hard work –
and your program‘s performance – right out the
window.“

 Temporary objects are unnamed objects created
on the stack by the compiler
 They are used during reference initialization and

during evaluation of expressions including
standard type conversions, argument passing,
function returns, and evaluation of the throw
expression

How can we spot them and avoid them?

Diana

Temporary Objects

24.04.2013
Temporary Objects

How many unnecessary temporary objects exist in
this function?

String FindAddr(list<Employee> emps, string name)
{
 for(list<Employee>::iterator i = emps.begin();
 i != emps.end();
 i++)
 {
 if(*i == name)
 {
 return i->addr;
 }
 }
 return ““;
}

Diana

Temporary Objects

24.04.2013

Temporary Objects:
Two obvious cases

 Pass-by-value forces the compiler to make complete
copies of both objects, which can be expensive and is
completely unnecessary.

 The parameters should be passed by const&

string FindAddr(list<Employee> emps, string name) string FindAddr(list<Employee> emps, string name)

string FindAddr(const list<Employee>& emps,
 const string& name)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
Another obvious case

 Calling end() returns a temporary object that must be
constructed and destroyed.

 Value will not change, recomputing (and reconstructing
and redestroying) it on every loop iteration is both
needlessly inefficient and unaesthetic.

 Value should be computed only once, stored in a local
object, and reused.

for(/*…*/; i != emps.end(); /*…*/) for(/*…*/; i != emps.end(); /*…*/)

list<Employee>::const_iterator endPos(emps.end());
for(/*…*/; i != endPos; /*…*/)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
A more sophisticated case

 Postincrement is usually less efficient than
preincrement because it has to remember and return
it’s original value

 Postincrement has to do all the same work as
preincrement, but in addition it also has to construct
and return another object containing the original value.

for(/*…*/; i++) for(/*…*/; i++)

const T T::operator++(int)
{
 T old(*this);//remember original value
 ++*this; //alway implement postincrement
 // in terms of preincrement
 return old; //return original value
}

Diana

Temporary Objects

24.04.2013

Temporary Objects:
A more sophisticated case

 In the code, the original value is never used, so there’s
no reason to use postincrement

 Preincrement should be used instead

for(/*…*/; i++) for(/*…*/; i++)

for(/*…*/; ++i)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
Another sophisticated case

 The Employee class isn’t shown in the problem, but..
 For this code to work, Employee must have a

conversion to string or a conversion constructor taking
a string
 Both cases create a temporary object, invoking either
operator==() for strings or operator==() for
Employees

 Solution
– Create operator==() that takes one of each
– Employee has a conversion to a reference, that is
string&

if(*i == name)

if(i->name == name)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
Red herring – Not avoidable

 Both of these statements create temporary string
objects, but those objects can’t be avoided

 In the past, people argue that it’s better to declare a

local string object to hold the return value and have a
single return statement that return that string

 + More readable
 +/- Improve or degrades performance, depend
 greatly on your actual code and compiler

return i->addr;
return ””;
return i->addr;
return ””;

Diana

Temporary Objects

24.04.2013

Temporary Objects:
Red herring – Not avoidable

 It may seem like you could avoid a temporary in all
return cases simply by declaring the return type to be
string& instead of string, but this is wrong…

– Program will crash as soon as the calling code tries

to use the reference, because the local object it
refers to no longer exists

– OR your code will appear to work and fail
intermittently, causing you to spend long nights
toiling away in the debugger

string FindAddr(/*…*/) string FindAddr(/*…*/)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
What we have learned today

 Prefer passing objects by const& instead of
passing by value

 Prefer precomputing values that won‘t change,

instead of recreating objects unnecessarily

 Prefer preincrement. Only use postincrement if
you’re going to use the original value

string FindAddr(const list<Employee>& emps,
 const string& name)

list<Employee>::const_iterator endPos(emps.end());
for(/*…*/; i != endPos; /*…*/)

for(/*…*/; ++i)

Diana

Temporary Objects

24.04.2013

Temporary Objects:
What we have learned today

 Watch out for hidden temporaries created by
implicit conversions

 Be aware of object lifetimes. Never, ever, ever

return pointers or references to local automatic
objects; they are completely not useful because
the calling code can’t follow them, and (what’s
worse) the calling code might try.

Effective reuse:
Using the standard

library
Diana

Diana

Temporary Objects

24.04.2013

Effective reuse:
Using the standard library

 Effective reuse is an important part of good
software engineering

 Reconsider previous Item “Temporary Objects” to

demonstrate how many of the problems could
have been avoided by simply reusing what’s
already available in the standard library

Diana

Temporary Objects

24.04.2013

Effective reuse:
Using the standard library

The mostly fixed function:

string FindAddr(const list<Employee>& emps,
 const string& name)
{
 list<Employee>::const_iterator end(emps.begin());
 for(list<Employee>::iterator i = emps.begin();
 i != end;
 ++i)
 {
 if(i->name == name)
 {
 return i->addr;
 }
 }
 return ““;
}

Diana

Temporary Objects

24.04.2013

Effective reuse:
Using the standard library

 Using the standard find() algorithm could have
avoided two temporaries, as well as the
emps.end() recomputation inefficiency from the
original code

 For the best effect to reduce temporaries, provide

an operator==() taking an Employee& and a
name string&

Diana

Temporary Objects

24.04.2013

Effective reuse:
Using the standard library

Using find():

String FindAddr(list<Employee> emps, string name)
{
 list<Employee>::iterator i(
 find(emps.begin(); emps.end(), name)
);

 if(i != emps.end())
 {
 return i->addr;
 }

 return ““;
}

Diana

Temporary Objects

24.04.2013

Effective reuse:
Using the standard library

Combined with previous fixes, we get a much
improved function:

String FindAddr(const list<Employee>& emps,
 const string& name)
{
 list<Employee>::const_iterator i(
 find(emps.begin(); emps.end(), name)
);

 if(i != emps.end())
 {
 return i->addr;
 }

 return ““;
}

Diana

Temporary Objects

24.04.2013

Effective reuse:
What we have learned today

 Reuse code – especially standard library code –
instead of handcrafting your own. It’s faster,
easier, and safer

 The standard library is full of code that’s intended

to be used and reused

Diana

Temporary Objects

24.04.2013

[1] Herb Sutter. Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Solutions. Addison-Wesley,
p18-24, ISBN 0-201-61562-2.

	Temporary Objects
	Temporary Objects
	Temporary Objects
	Temporary Objects: �Two obvious cases
	Temporary Objects: �Another obvious case
	Temporary Objects: �A more sophisticated case
	Temporary Objects: �A more sophisticated case
	Temporary Objects: �Another sophisticated case
	Temporary Objects: �Red herring – Not avoidable
	Temporary Objects: �Red herring – Not avoidable
	Temporary Objects:�What we have learned today
	Temporary Objects: �What we have learned today
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�What we have learned today
	Slide Number 20

