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,Junnecessary and/or temporary objects are
frequent culprits that can throw all your hard work —
and your program'‘s performance — right out the
window.“

" Temporary objects are unnamed objects created
on the stack by the compiler

" They are used during reference initialization and
during evaluation of expressions including
standard type conversions, argument passing,
function returns, and evaluation of the throw
expression

- How can we spot them and avoid them?
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How many unnecessary temporary objects exist in
this function?

String FindAddr( list<Employee> emps, string name )

{

for( list<Employee>::i1terator 1 = emps.begin();
1 = emps.end();

1++ )
{
1ITC *1 == name )
{
return 1->addr;
by
by
return ““;

}
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string FindAddr( list<Employee> emps, string name )

" Pass-by-value forces the compiler to make complete
copies of both objects, which can be expensive and is
completely unnecessary.

" The parameters should be passed by const&

string FindAddr( const list<Employee>& emps,
const string& name )
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for( /*.*%/; 1 = emps.end(); /7*.*/ )

" Calling end() returns a temporary object that must be
constructed and destroyed.

® Value will not change, recomputing (and reconstructing
and redestroying) it on every loop iteration is both
needlessly inefficient and unaesthetic.

" Value should be computed only once, stored in a local
object, and reused.

list<Employee>::const i1terator endPos( emps.end() );
for( /*.*/; 1 1= endPos; /*.*/ )
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for( /*.7%/; i++ )

" Postincrement is usually less efficient than
preincrement because it has to remember and return
It's original value

const T T::operator++(int)

{

T old(*this);//remember original value
++*this; //alway 1mplement postincrement

// 1n terms of preincrement
return old; //return original value

}

" Postincrement has to do all the same work as
preincrement, but in addition it also has to construct
and return another object containing the original value.
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for( /*.7%/; i++ )

" In the code, the original value is never used, so there’s
No reason to use postincrement

" Preincrement should be used instead

for( /*.*%/; ++i1 )
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1ITC *1 == name )

" The Employee class isn’t shown in the problem, but..

" For this code to work, Employee must have a

conversion to string or a conversion constructor taking
a string

" Both cases create a temporary object, invoking either
operator==() for strings or operator==_) for
Employees

= Solution

— Create operator==() that takes one of each

— Employee has a conversion to a reference, that is
string&

IT( 1->name == name )
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return i1->addr;
return 777

" Both of these statements create temporary string
objects, but those objects can’'t be avoided

" |n the past, people argue that it’s better to declare a
local string object to hold the return value and have a
single return statement that return that string

+ More readable
+/- Improve or degrades performance, depend
greatly on your actual code and compiler
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string FindAddr( /7*.*/ )

" |t may seem like you could avoid a temporary in all

return cases simply by declaring the return type to be
stringé& instead of string, but this is wrong...

— Program will crash as soon as the calling code tries
to use the reference, because the local object it
refers to no longer exists

— OR your code will appear to work and fail
Intermittently, causing you to spend long nights
toiling away in the debugger
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" Prefer passing objects by const& instead of
passing by value

string FindAddr( const list<Employee>& emps,
const string& name )

" Prefer precomputing values that won‘t change,
Instead of recreating objects unnecessarily

list<Employee>: :const i1terator endPos( emps.end());
for( /*.*/; 1 1= endPos; /*.*/ )
" Prefer preincrement. Only use postincrement if
you're going to use the original value
for( /*.*%/; ++i1 )
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" Watch out for hidden temporaries created by
Implicit conversions

" Be aware of object lifetimes. Never, ever, ever
return pointers or references to local automatic
objects; they are completely not useful because
the calling code can’t follow them, and (what’s

worse) the calling code might try.
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" Effective reuse is an important part of good
software engineering

" Reconsider previous ltem “Temporary Objects” to
demonstrate how many of the problems could
have been avoided by simply reusing what’s
already available in the standard library
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The mostly fixed function:

string FindAddr( const list<Employee>& emps,
const string& name )
{
list<Employee>::const_iterator end( emps.begin() );
for( list<Employee>::i1terator 1 = emps.begin();

1 '= end;
++1 )
{
1IT( 1->name == name )
{
return 1->addr;
+
by

return “““‘;

}
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" Using the standard fi1nd() algorithm could have

avoided two temporaries, as well as the
emps.end() recomputation inefficiency from the

original code

" For the best effect to reduce temporaries, provide
an operator==() taking an Employee& and a
name string&
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Using find():

String FindAddr( list<Employee> emps, string name )
{

list<Employee>::i1terator 1(
find( emps.begin(); emps.end(), name)
);

1ITC 1 = emps.end() )
{

return 1->addr;

el
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Combined with previous fixes, we get a much
Improved function:

String FindAddr( const list<Employee>& emps,
const string& name )
{

list<Employee>::const_iterator 1(
find( emps.begin(); emps.end(), name)

);
IFC 1 1= emps.end() )
¢ return 1->addr;
}
return
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" Reuse code — especially standard library code —
Instead of handcrafting your own. It’s faster,
easier, and safer

" The standard library is full of code that’s intended
to be used and reused
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