Temporary Objects

Diana

DEUTSCHES
z KREBSFORSCHUNGSZENTRUM
. IN DER HELMHOLTZ-GEMEINSCHAFT

Diana

Temporary Objects Tem p O rary Ob] eCtS

24.04.2013

,Junnecessary and/or temporary objects are
frequent culprits that can throw all your hard work —
and your program'‘s performance — right out the
window.“

" Temporary objects are unnamed objects created
on the stack by the compiler

" They are used during reference initialization and
during evaluation of expressions including
standard type conversions, argument passing,
function returns, and evaluation of the throw
expression

- How can we spot them and avoid them?

Diana

emoevosess | Temporary Objects

How many unnecessary temporary objects exist in
this function?

String FindAddr(list<Employee> emps, string name)

{

for(list<Employee>::i1terator 1 = emps.begin();
1 = emps.end();

1++)
{
1ITC *1 == name)
{
return 1->addr;
by
by
return ““;

}

Diana

Temporary Objects:

Temporary Objects TWO O b V I O u S C aS eS

24.04.2013

string FindAddr(list<Employee> emps, string name)

" Pass-by-value forces the compiler to make complete
copies of both objects, which can be expensive and is
completely unnecessary.

" The parameters should be passed by const&

string FindAddr(const list<Employee>& emps,
const string& name)

Temporary Objects:

Diana

Temporary Objects Another ObVIOUS CaSe

24.04.2013

for(/*.*%/; 1 = emps.end(); /7*.*/)

" Calling end() returns a temporary object that must be
constructed and destroyed.

® Value will not change, recomputing (and reconstructing
and redestroying) it on every loop iteration is both
needlessly inefficient and unaesthetic.

" Value should be computed only once, stored in a local
object, and reused.

list<Employee>::const i1terator endPos(emps.end());
for(/*.*/; 1 1= endPos; /*.*/)

Temporary Objects:

Diana

Temporary Objects A more Sophlstlcated CaSe

24.04.2013

for(/*.7%/; i++)

" Postincrement is usually less efficient than
preincrement because it has to remember and return
It's original value

const T T::operator++(int)

{

T old(*this);//remember original value
++*this; //alway 1mplement postincrement

// 1n terms of preincrement
return old; //return original value

}

" Postincrement has to do all the same work as
preincrement, but in addition it also has to construct
and return another object containing the original value.

Temporary Objects:

Diana

Temporary Objects A more Sophlstlcated Case

24.04.2013

for(/*.7%/; i++)

" In the code, the original value is never used, so there’s
No reason to use postincrement

" Preincrement should be used instead

for(/*.*%/; ++i1)

Diana

Temporary Objects:

eemoees | Another sophisticated case

24.04.2013

1ITC *1 == name)

" The Employee class isn’t shown in the problem, but..

" For this code to work, Employee must have a

conversion to string or a conversion constructor taking
a string

" Both cases create a temporary object, invoking either
operator==() for strings or operator==_) for
Employees

= Solution

— Create operator==() that takes one of each

— Employee has a conversion to a reference, that is
string&

IT(1->name == name)

Temporary Objects:

Diana

wwwos | Rad herring — Not avoidable dkfz.

24.04.2013

return i1->addr;
return 777

" Both of these statements create temporary string
objects, but those objects can’'t be avoided

" |n the past, people argue that it’s better to declare a
local string object to hold the return value and have a
single return statement that return that string

+ More readable
+/- Improve or degrades performance, depend
greatly on your actual code and compiler

Temporary Objects:

Diana

wwwos | Rad herring — Not avoidable dkfz.

24.04.2013

string FindAddr(/7*.*/)

" |t may seem like you could avoid a temporary in all

return cases simply by declaring the return type to be
stringé& instead of string, but this is wrong...

— Program will crash as soon as the calling code tries
to use the reference, because the local object it
refers to no longer exists

— OR your code will appear to work and fail
Intermittently, causing you to spend long nights
toiling away in the debugger

Diana
Temporary Objects
24.04.2013

Temporary Objects:

What we have learned today dkfz.

" Prefer passing objects by const& instead of
passing by value

string FindAddr(const list<Employee>& emps,
const string& name)

" Prefer precomputing values that won‘t change,
Instead of recreating objects unnecessarily

list<Employee>: :const i1terator endPos(emps.end());
for(/*.*/; 1 1= endPos; /*.*/)
" Prefer preincrement. Only use postincrement if
you're going to use the original value
for(/*.*%/; ++i1)

Temporary Objects:

Diana

o | What we have learned today dkfz.

24.04.2013

" Watch out for hidden temporaries created by
Implicit conversions

" Be aware of object lifetimes. Never, ever, ever
return pointers or references to local automatic
objects; they are completely not useful because
the calling code can’t follow them, and (what’s

worse) the calling code might try.

Effective reuse:
Using the standard
library

Diana

DEUTSCHES
z KREBSFORSCHUNGSZENTRUM
. IN DER HELMHOLTZ-GEMEINSCHAFT

Effective reuse:

Diana

o | UsIng the standard library

24.04.2013

" Effective reuse is an important part of good
software engineering

" Reconsider previous ltem “Temporary Objects” to
demonstrate how many of the problems could
have been avoided by simply reusing what’s
already available in the standard library

Effective reuse:

Diana

o | Using the standard library

24.04.2013

The mostly fixed function:

string FindAddr(const list<Employee>& emps,
const string& name)
{
list<Employee>::const_iterator end(emps.begin());
for(list<Employee>::i1terator 1 = emps.begin();

1 '= end;
++1)
{
1IT(1->name == name)
{
return 1->addr;
+
by

return “““‘;

}

Effective reuse:

Diana

o | Using the standard library

24.04.2013

" Using the standard fi1nd() algorithm could have

avoided two temporaries, as well as the
emps.end() recomputation inefficiency from the

original code

" For the best effect to reduce temporaries, provide
an operator==() taking an Employee& and a
name string&

Effective reuse:

Diana

o | Using the standard library

24.04.2013

Using find():

String FindAddr(list<Employee> emps, string name)
{

list<Employee>::i1terator 1(
find(emps.begin(); emps.end(), name)
);

1ITC 1 = emps.end())
{

return 1->addr;

el

Effective reuse:

Diana

o | Using the standard library

24.04.2013

Combined with previous fixes, we get a much
Improved function:

String FindAddr(const list<Employee>& emps,
const string& name)
{

list<Employee>::const_iterator 1(
find(emps.begin(); emps.end(), name)

);
IFC 1 1= emps.end())
¢ return 1->addr;
}
return

Effective reuse:

Diana

wewoes | What we have learned today dkfz.

24.04.2013

" Reuse code — especially standard library code —
Instead of handcrafting your own. It’s faster,
easier, and safer

" The standard library is full of code that’s intended
to be used and reused

Diana

Temporary Objects

24.04.2013

i
i

{ jr*-' [1] Herb Sutter. Exceptional C++: 47 Englneerlng Puzzles,
" Programming Problems, and Solutions. Addison-Wesley,
p18-24, ISBN 0-201-61562-2.

	Temporary Objects
	Temporary Objects
	Temporary Objects
	Temporary Objects: �Two obvious cases
	Temporary Objects: �Another obvious case
	Temporary Objects: �A more sophisticated case
	Temporary Objects: �A more sophisticated case
	Temporary Objects: �Another sophisticated case
	Temporary Objects: �Red herring – Not avoidable
	Temporary Objects: �Red herring – Not avoidable
	Temporary Objects:�What we have learned today
	Temporary Objects: �What we have learned today
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�Using the standard library
	Effective reuse:�What we have learned today
	Slide Number 20

