
digital numerical representations

markus fangerau @ mbi/dkfz

16.3.2011

integer

• common sizes:

– 8bit (char)

– 16bit (short)

– 32bit (int)

– 64bit (int64_t)

• CPUs provide modular arithmetic operations to
be performed on integers

Example: 3bit integer ℤ/8ℤ
bitwise 000 001 010 011 100 101 110 111

unsigned 0 1 2 3 4 5 6 7

signed 0 1 2 3 -4 -3 -2 -1

• In respect to addition forms an
abelian group (ℤ/8ℤ, +)

• In respect to multiplication
forms a semigroup (ℤ/8ℤ,∗)

• It’s no finite field, 8 (or any 2𝑛
with n>1) is no prime

signed / unsigned comparison
problems

– Example loop:
for (unsigned int x=0; x<8; x++) …;

– Now reverse iterating the loop as this won’t work:
for (unsigned int x=8-1; x>=0; x--) …;

 x is always >= 0, loop never ends

– Exactly reverse mirrored behavior while using
unsigned types:

unsigned int x=8; while(x-- > 0) …;

– Or just use signed types (like its enforced in Java):
for (int x=8-1 ; x>=0 ; x--) …;

SO BE CAREFUL WHEN FIXING SIGNED/UNSIGNED WARNINGS

Example: unsigned modification time
stamp counters

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

object B

object B

object A

object A

0 1 2 3 4 5 6 7

object B object A

global

global

global

object B depends on object A:

Wrap-around of global counter:

object A gets updated:

object B does not recognize a modified object A and wont update

Example: unsigned modification time
stamp counters

• After the counter wrap-around, all modification times are invalid and
following does not work always:

If(objectA.time > objectB.time) objectB.update();

when using an unsigned comparison your program may very likely show
unexpected behavior after a specific time

• Following works by using modular arithmetic and computing the relative
signed time difference:

If(int(objectA.time-objectB.time) > 0)
 objectB.update();

using a signed comparison ignores the counter wrap-around

floating-point
Many numbers in decimal (base 10) format can not be exactly
expressed as binary (base 2) floats:

Base 10 (decimal) Base 2 (binary)

1.0 𝟏. 𝟎 ∗ 𝟏𝟎𝟎 1.0 𝟏. 𝟎 ∗ 𝟐𝟎

2.0 𝟐. 𝟎 ∗ 𝟏𝟎𝟎 10.0 𝟏. 𝟎 ∗ 𝟐𝟏

0.5 𝟓. 𝟎 ∗ 𝟏𝟎−𝟏 0.1 𝟏. 𝟎 ∗ 𝟐−𝟏

0.0625 𝟔. 𝟐𝟓 ∗ 𝟏𝟎−𝟐 0.0001 𝟏. 𝟎 ∗ 𝟐−𝟒

123.0 𝟏. 𝟐𝟑 ∗ 𝟏𝟎𝟐 1111011.0 𝟏. 𝟏𝟏𝟏𝟎𝟏𝟏 ∗ 𝟐𝟔

0.1 𝟏. 𝟎 ∗ 𝟏𝟎−𝟏 0.0011001100… 𝟏. 𝟏𝟎𝟎𝟏𝟏. .∗ 𝟐−𝟑

fixed-point floating-point fixed-point floating-point

floating-point (IEEE-754)

32 (float) or 64 (double) bits

1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 …

1bit 8 or 11bits 23 or 52 bits

Bias is 127 for float and 1023 for double

represents: ±1, 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡

Can be interpreted as a logarithmic-like transferfunction

Example for a float:

−𝟏, 𝟎𝟎𝟏𝟎𝟏𝟎 … ∗ 𝟐𝟎

Sign Exponent+Bias Mantissa

floating-point ranges & special values
Denormalized Normalized Approximate Decimal

float
± 2-149 to
(1-2-23)×2-126

± 2-126 to
(2-2-23)×2127

± ~10-44.85 to
 ~1038.53

double
± 2-1074 to
(1-2-52)×2-1022

± 2-1022 to
(2-2-52)×21023

± ~10-323.3 to
 ~10308.3

Denormalized:
if the exponent is all bits 0 then the value is a denormalized number (no implicit leading 1)

Infinite:
If the exponent is all bits 1 and the mantissa is all 0,
then the value represents +Infinity or –Infinity

NaN (quiet and signaling Not-a-Number’s):
If the exponent is all bits 1 and the mantissa is non-zero,
Quiet NaNs propagate through computations
Signaling NaNs throw exception on use (i.e. for catching uninitialized variables access)

some words about precision

• multiplication: almost hassle-free

– Especially multiplication with powers of two retain full precision
– Exponents get added, Mantissas get multiplied

• addition: little more difficult

– With too much differing exponents between summands, one of

the mantissa may be partly or even completely ignored.

Get a “feeling” for how much of the mantissa is already used up and how much
information you loose.

some about runtime

integer floating point

addition fast slow

subtraction fast slow

multiplication slow fast

division very slow very slow

- Prefer the term a*b+c instead of the term (a+b)*c , because it can be often the
compiled into a single multiply-add-instruction which is twice as fast.

- Avoid casts between floating-point and integer (results in register transfers)

Reducing memory requirements

• nVidias and Industrial Light & Magic’s 16bit floating-
point (half)

• Shared exponent on vector float types (i.e. hdr RGBE
photo images)

• Fixed-point representations omitting the exponent

• Applying transferfunctions before en/decoding as an
integer (i.e. sRGB)

Danke

