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integer 

• common sizes:  

 
– 8bit (char)  

– 16bit (short) 

– 32bit (int) 

– 64bit (int64_t) 

 

• CPUs provide modular arithmetic operations to 
be performed on integers 



Example: 3bit integer   ℤ/8ℤ 
bitwise 000 001 010 011 100 101 110 111 

unsigned 0 1 2 3 4 5 6 7 

signed 0 1 2 3 -4 -3 -2 -1 

• In respect to addition forms an  
abelian group (ℤ/8ℤ, +) 
 

• In respect to multiplication 
forms a semigroup (ℤ/8ℤ,∗) 
 

• It’s no finite field, 8 (or any 2𝑛  
with n>1) is no prime 



signed / unsigned comparison 
problems 

– Example loop: 
for ( unsigned int x=0; x<8; x++) …; 

– Now reverse iterating the loop as this won’t work: 
for ( unsigned int x=8-1; x>=0; x-- ) …; 

    x is always >= 0, loop never ends 

– Exactly reverse mirrored behavior while using 
unsigned types: 

unsigned int x=8; while( x-- > 0 ) …; 

– Or just use signed types (like its enforced in Java): 
for ( int x=8-1 ; x>=0 ; x-- ) …; 

 

SO BE CAREFUL  WHEN FIXING SIGNED/UNSIGNED WARNINGS 

 



Example: unsigned modification time 
stamp counters 
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global 

object B depends on object A: 

Wrap-around of global counter: 

object A gets updated: 

object B does not recognize a modified object A and wont update 



Example: unsigned modification time 
stamp counters 

• After the counter wrap-around, all modification times are invalid and 
following does not work always: 

 
If( objectA.time > objectB.time ) objectB.update(); 
 
when using an unsigned comparison your program may very likely show 
unexpected behavior after a specific time 

 

• Following works by using modular arithmetic and computing the relative 
signed time difference: 

 
If( int(objectA.time-objectB.time) > 0 )            
    objectB.update(); 
 
using a signed comparison ignores the counter wrap-around 



floating-point 
Many numbers in decimal (base 10) format can not be exactly 
expressed as binary (base 2) floats: 

Base 10 (decimal) Base 2 (binary) 

1.0 𝟏. 𝟎 ∗ 𝟏𝟎𝟎 1.0 𝟏. 𝟎 ∗ 𝟐𝟎 

2.0 𝟐. 𝟎 ∗ 𝟏𝟎𝟎 10.0 𝟏. 𝟎 ∗ 𝟐𝟏 

0.5 𝟓. 𝟎 ∗ 𝟏𝟎−𝟏 0.1 𝟏. 𝟎 ∗ 𝟐−𝟏 

0.0625 𝟔. 𝟐𝟓 ∗ 𝟏𝟎−𝟐 0.0001 𝟏. 𝟎 ∗ 𝟐−𝟒 

123.0 𝟏. 𝟐𝟑 ∗ 𝟏𝟎𝟐 1111011.0 𝟏. 𝟏𝟏𝟏𝟎𝟏𝟏 ∗ 𝟐𝟔 

0.1 𝟏. 𝟎 ∗ 𝟏𝟎−𝟏 0.0011001100… 𝟏. 𝟏𝟎𝟎𝟏𝟏. .∗ 𝟐−𝟑 

fixed-point floating-point fixed-point floating-point 



floating-point (IEEE-754) 

32 (float) or 64 (double) bits 

 

1 0 1 1 1 1 1 1 1  0 0 1 0 1 0 … 

1bit         8 or 11bits                                            23 or 52 bits 

Bias is 127 for float and 1023 for double 

 
represents:  ±1, 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 
 
Can be interpreted as a logarithmic-like transferfunction 
 
Example for a float: 
 
 

−𝟏, 𝟎𝟎𝟏𝟎𝟏𝟎 … ∗  𝟐𝟎 

Sign Exponent+Bias Mantissa 



floating-point ranges & special values  
Denormalized Normalized Approximate Decimal 

float 
± 2-149 to  
(1-2-23)×2-126 

± 2-126 to  
(2-2-23)×2127 

± ~10-44.85 to 
 ~1038.53 

double 
± 2-1074 to  
(1-2-52)×2-1022 

± 2-1022 to  
(2-2-52)×21023 

± ~10-323.3 to 
 ~10308.3 

Denormalized: 
if the exponent is all bits 0 then the value is a denormalized number (no implicit leading 1) 
 
Infinite: 
If the exponent is all bits 1 and the mantissa is all 0,  
then the value represents +Infinity or –Infinity 
 
NaN (quiet and signaling Not-a-Number’s): 
If the exponent is all bits 1 and the mantissa is non-zero,  
Quiet NaNs propagate through computations 
Signaling NaNs throw exception on use (i.e. for catching uninitialized variables access) 



some words about precision 

• multiplication: almost hassle-free 
 
– Especially multiplication with powers of two retain full precision 
– Exponents get added, Mantissas get multiplied 

 

• addition: little more difficult 
 
– With too much differing exponents between summands, one of 

the mantissa may be partly or even completely ignored. 

 
Get a “feeling” for how much of the mantissa is already used up and how much 
information you loose. 

 



some about runtime 

integer floating point 

addition fast slow 

subtraction fast slow 

multiplication slow fast 

division  very slow very slow 

- Prefer the term a*b+c instead of the term (a+b)*c , because it can be often the 
compiled into a single multiply-add-instruction which is twice as fast. 
 

- Avoid casts between floating-point and integer (results in register transfers) 
 



Reducing memory requirements 

• nVidias and Industrial Light & Magic’s 16bit floating-
point (half) 

 

• Shared exponent on vector float types (i.e. hdr RGBE 
photo images) 

 

• Fixed-point representations omitting the exponent 

 

• Applying transferfunctions before en/decoding as an 
integer (i.e. sRGB) 



Danke 

 


