
23/10/2015

Programming in the future tense,

or Accept that things will change

Michael Brehler

Medical and Biological Informatics (MBI)

Page 2 10/23/2015 |

Michael Brehler

MBI

Programming in the future tense

Object-oriented programming

 Support for incremental changes

 add new functionality and new properties

Good software:

• Adepts well to change

• Accommodates new features

• Ports to new platforms

• Adjusts to new demands

• Handles new inputs

Good software does not come about by accident,

Good software is written by Programming in the future tense!

robust

reliable

flexible

Page 3 10/23/2015 |

Michael Brehler

MBI

Why?

What could happen…

• New classes are added to the hierarchies

• New overloading will occur

• Derived classes may be tomorrow‘s base classes

• Functions are called in new context

Page 4 10/23/2015 |

Michael Brehler

MBI

Why?

What could will happen!

• New classes are added to the hierarchies

• New overloading will occur

• Derived classes may be tomorrow‘s base classes

• Functions are called in new context

Additional problem:

“It is to remember that the programmers who modify code [fix

bugs] are typically NOT the code‘s original developers!”
- Scott Meyers, More Effective C++, Addison-Wesley, 2011

Page 5 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• One way to do this is to express design constraints in C++

(in addition to comments and documentation):

• A class is designed to never have derived classes

 use C++ to prevent derivation

or even better, use the final keyword of C++ 11

Page 6 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• If copy and assignment make no sense for a class

 prevent those operations by declaring the copy constructor

and assignment operator private

 Prevent partial assignments

Page 7 10/23/2015 |

Michael Brehler

MBI

Chicken / Lizard example

Animal

Lizard Chicken

Animal class embodies all features

shared by all creatures

Specialize Animal in

ways appropriate for

Chickens and Lizards

Page 8 10/23/2015 |

Michael Brehler

MBI

Chicken / Lizard example

Only the Animal part

liz1 will be modified!

 Partial assignment

Page 9 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• Avoid „demand-paged“ virtual functions (only make functions

virtual when somebody comes along and demands it)

 Make it virtual if it makes sense

 If it does not make sense that's ok but don‘t change it later

just because it would be convenient for someone

• Handle assignments and copy construction in every class

 Even if „nobody ever does those things“

Recognize that anything somebody CAN do, they WILL

do.

Page 10 10/23/2015 |

Michael Brehler

MBI

Examples

Most frequent (simple) MITK examples:

• Assigning objects to themselves

• Use objects before giving them values

• Give objects values and never use them

• Give objects huge, tiny or null values

 A friendly reminder:

 If it will compile, somebody will do it.

Page 11 10/23/2015 |

Michael Brehler

MBI

Summary

• Present-tense thinking is ok

• You can’t wait for the latest language features

• It has to run on the current hardware

• It has to offer acceptable performance NOW

• Provide complete classes, even if some parts aren‘t currently

used.

• Design your interfaces to facilitate common operations and

prevent common errors Make the classes hard to use

incorrectly!

• If there is no great penalty for generalizing your code,

generalize it.

Page 12 10/23/2015 |

Michael Brehler

MBI

Be a renegade and program in future tense!

